SANDIA REPORT

SAND2014-15076
Unlimited Release
Printed June 2014

Report for the ASC CSSE L2 Milestone
(4873) — Demonstration of Local Failure
Local Recovery Resilient Programming
Model

Keita Teranishi and Michael A. Heroux

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s

National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2014-15076
Unlimited Release
Printed June 2014

Report for the ASC CSSE L2 Milestone (4873) —
Demonstration of Local Failure Local Recovery
Resilient Programming Model

Keita Teranishi Michael A. Heroux
Sandia National Laboratories P.O. Box 5800
P.O. Box 969 MS 1320
MS 9159 Albuquerque, NM 87185-1320
Livermore, CA 94551-0969 maherou@sandia.gov

knteran @sandia.gov

Abstract

Recovery from process loss during the execution of a distributed memory parallel application is
presently achieved by restarting the program, typically from a checkpoint file. Future computer
system trends indicate that the size of data to checkpoint, the lack of improvement in parallel
file system performance and the increase in process failure rates will lead to situations where
checkpoint restart becomes infeasible. In this report we describe and prototype the use of a new
application level resilient computing model that manages persistent storage of local state for
each process such that, if a process fails, recovery can be performed locally without requiring
access to a global checkpoint file. LFLR provides application developers with an ability to
recover locally and continue application execution when a process is lost. This report discusses
what features are required from the hardware, OS and runtime layers, and what approaches
application developers might use in the design of future codes, including a demonstration of
LFLR-enabled MiniFE code from the Matenvo mini-application suite.

Acknowledgment

The authors would like to thank the TLCC2 Chama cluster operation team for their support.
This system was a valuable resource to study our approach on the fault recovery. The authors
would also thank George Bosilca at University of Tennessee for his support of MPI-ULFM and
porting activities for the Chama cluster.

Contents

EXecutive SUMMATYttt e e e e e 7
Milestone DeSCriptionottt e e 7
Milestones Completion Criteriattt en. 7
Milestone Certification Method 7
Milestones Highlights e 8

NOMENCIATUIE oo e 9

INtrodUCHION e 11

Background. 13

Local Failure Local Recovery (LFLR) e 15
LFLR Framework e 16

Application Recovery using the LFLR framework 21
Process Recovery e 21
Data ReCOVETY oo e 21
Application State RECOVETYot 22

Use Case: Resilient MiniFE e 25
Performance of Resilient MiniFE 26

DASCUSSIONS . .« v vt ettt et ettt ettt e e e e e e e e e 33
Asynchronous Process Rank Arrangement 33
Resilient Collectives and Their Applicationsc.o ... 33
Recovery Semantics i e 34
Recovery from Catastrophic Failures 34
Usability of LELR 35

CONCIUSIONS . .« v e ettt ettt e e e e e e et 37

RefOrENCES e 39

Figures

1 Execution Model of LFLR 15
Architecture of LFLR Framework. The annotation on the left is the use case de-
scribed in this TEPOTL.ottt e e 16

3 Splitting of MPI _Comm by Resilient Communicator: the circles with dashed line
indicate the SPare PrOCESSES. v vt vttt ettt et e e e 18

4 Commit and Restore using dedicated Parity. 19

5 Progress of the stack in LFLR_registry for a typical PDE-based application.. 20

6 Effective saving in the redundant storage requirement. Y-axis on the left indicate
the data size of two different matrix data restoration schemes presented by the
bar chart. Y-axis on the right indicates the execution time of commit and restore
operations for these two restoration schemes. 22
7 Code modification to enable LFLR. A spare process has f1g=false to skip the
real computation. Once it joins the computing processes, £1g is changed to true
to perform real computation for the lost process. 23

5

Execution Time of Resilient MiniFE including all recovery cost. The cost for A11
solve + recovery and A1l solve without recovery are hard to distinguish
in the logarithmic scale. 30
Execution Time of Individual Recovery Components in Resilient MiniFE. 31
Execution Time of Individual Global Agreement Calls (tree-based) in Communi-
cator Fix on 1,024 cores. The numbers in X-axis indicate the calling sequence.
Many of the calls spend as small as 0.001 seconds........................... 32

Tables

1

A partial list of interfaces available in MPI-ULFM 13
Performance of Communicator Fix: the cost of MPI_Comm_shrink and a couple of
MPI_Comm_-Createcalls.. e 26
Execution Time of the LFLR enabled Time-Stepping MiniFE in seconds. STD
stands for standard deviation.. i i 27
Execution Time of single linear system solution in the LFLR enabled Time-Stepping
MiniFE (in seconds). STD stands for standard deviation. 27
Execution time of process recovery in the LFLR enabled Time-Stepping MiniFE

(in seconds). STD stands for standard deviation. 28

Execution Time of the initial commit and the 20 commit operations during time
stepping in the LFLR enabled Time-Stepping MiniFE (in seconds). STD stands
for standard deviation. 28
Execution Time of the data recovery operation for single process failures in the
LFLR enabled Time-Stepping MiniFE (in seconds). STD stands for standard de-
VIATIOM. « . ottt ettt e e e e 29
Execution Time of all the failure notification operations by MPI_Comm_agree (in
seconds). MPI_Comm_agree is called every CG iteration within the linear system
solver call. STD stands for standard deviation. 29

Executive Summary

Milestone Description

Resilience is a crosscutting issue that spans the entire software and hardware stack, and real-
ization of resilient applications requires a multifaceted approach. Global checkpoint/restart (C/R)
has been the dominant approach to addressing resilience for many years. Although file I/O perfor-
mance has not kept pace with computation and data growth, libraries such as Scalable Checkpoint
Restart (SCR) have been able to maintain acceptable global latencies. Even so, SCR is still a
global model with intrinsic limitations that warrant research and development of new approaches.
Although the full suite of suitable alternatives to C/R may take a long time to realize, there are ap-
proaches that can have a near-term impact. The local-failure-local-recovery (LFLR) model is one
of the most promising approaches to realizing a qualitative improvement in application resilience
to common system faults. LFLR relies heavily on a fundamental ability to store data persistently
such that, if an MPI process is lost, the persistently stored data will be available when a new process
is assigned to continue the work of the lost process. The implementation of persistent storage can
be done in several ways, but we will focus on defining appropriate interfaces and demonstrating
successful use of the model. The objective of this work is to provide the core prospective capabil-
ities and demonstrate how they can be used to avoid system-wide Checkpoint/Restart in favor of
application-driven local recovery.

Milestones Completion Criteria

1. Successful completion of execution for the Mantevo MiniFE miniapp under the [simulated]
loss of one or more MPI processes using a prototype persistent data API and basic imple-
mentation on the APL.

2. A clearly documented list of OS/Runtime Features required for realizing LFLR in a full-scale
application on a future unreliable system.

3. A description of the strategies application developers can use to integrate LFLR resilience
into their codes.

Milestone Certification Method

1. A formal program review.

2. A set of viewgraphs and SAND report.

Milestones Highlights

1. The LFLR model has been implemented within a software framework composed of com-
ponents and application programming interfaces (APIs) to meet the four capability require-
ments described later. The LFLR-enabled MiniFE code achieves scalable recovery from
successive process failures on 2,048 processes.

2. We identified four major OS/Runtime feature requirements to enable the LFLR model:

e Runtime and middleware that permits parallel program execution to continue under
process failures, although not necessarily tolerating failures that shut down a large frac-
tion (e.g., 50%) of processes.

e Runtime and middleware that can provide replacement processes for the failed ones,
in order to mitigate the complications of running a program with fewer processes. For
process replacement, we must provide APIs for querying the status of all the processes
(alive or lost).

e Persistent storage for restoring the data associated with failed processes.

e Tools and frameworks to build application specific recovery schemes. These services
would provide flexible options for re-constituting the lost local state of a given appli-
cation.

In addition to these requirements, our performance studies suggest additional requirements
for feasibility at scale:

e Scalable resilient agreement/collectives for efficient failure detection, failure notifica-
tion and spare process management.

e Interconnect network and protocols that can quickly initialize the connections for new
communication patterns.

3. This report describes how to use the LFLR framework with existing MPI applications in
Application Recovery using the LFLR framework Section, on page 20. One of the examples
presents a use case of implicit PDE solvers based on Finite Element Analysis of structured
mesh. This example demonstrates a significant reduction in the overhead of commit (check-
pointing) operations using the matrix regeneration code.

Nomenclature

SPMD Single Program Multiple Data, a parallel programming model. Data is partitioned and
computed simultaneously on multiple processes. SPMD is the most common programming
model for parallel computing.

MPI Message Passing Standard, the de fact standard software package for SPMD programming
model.

ULFM User Level Fault Mitigation, a fault-tolerance capability proposed for the MPI-4.0 stan-
dard.

MTBF Mean Time Between Failures.

C/R Checkpoint/Restart, a popular resilience/fault-tolerance technique.

10

Introduction

As leadership class computing systems increase in their complexity and the component feature
sizes continue to decrease, the ability of an application code to treat the system as a reliable digital
machine diminishes. In fact, there is a growing concern in the reliability of extreme scale systems
in future [3], exemplified by a significant reduction in mean time between failures (MTBF) to less
than an hour. For such unreliable systems, it is essential for application developers to manage
resilience issues beyond those provided by systems and hardware.

For application users, the majority of failures are manifested as single node failure. According
to Moody et al, the majority of application interrupts are related to single node failures in large PC
clusters [25] at Lawrence Livermore National Laboratory. Similarly, several anecdotal evidences
indicate that single node failures are predominant among application failures on Jaguar and Titan,
the largest computing systems in the US, at Oak Ridge National Laboratory.

In the current programming model, single node failure is typically handled by checkpoint/restart
(C/R); it kills all the remaining processes of an application execution and then restarts the appli-
cation from the most recent global snapshot of the execution. This approach fits to the current
MPI-3.0 standard [27] because a single process failure triggers a termination of the program exe-
cution on the rest of the processes. However, this globalized reaction to a single node (local) failure
will be infeasible for the future systems because we are already running applications on more than
100,000 MPI processes. Although the improvements in C/R techniques as seen in Scalable Check-
point Restart (SCR) [26] and the new I/O technologies such as NVRAM and the burst buffer [23]
will likely extend the feasibility of C/R under a short MTBE, the nature of disproportional recovery
for local failures needs to be addressed for efficient system use.

We address this scaling issue through an emerging resilient computing model called Local Fail-
ure Local Recovery (LFLR) that provides application developers with an ability to recover locally
and continue application execution when a process is lost. LFLR relies heavily on a fundamental
ability to store data persistently such that, if an MPI process is lost, the persistently stored data will
be available when a new process is assigned to continue the work of the lost process.

To meet all the capability requirements of LFLR, we design and implement a software frame-
work which encapsulates the individual capabilities to build an LFLR-enabled application. The
key techniques of this work are (1) hot spare process reserve for process and data redundancy,
(2) diskless checkpointing for scalable persistent data storage and redundancy and (3) leveraging
MPI-ULFM [5], a fault tolerance capability proposed for the MPI-4.0 standard, to avoid global
termination for a single process failure. Our approach demonstrates how these existing techniques
can be assembled to serve application-oriented HPC resilience while achieving a good scalability
for the recovery from process failures. The design of the software framework and the performance
results have revealed several problems of the feasibility of LFLR for the extreme scale computing
systems, discussed in the end of this report.

11

12

Background

Checkpoint/restart (C/R) is the most popular resilience technique for HPC applications. With
C/R we periodically stores a snapshot of the application state (checkpointing/commit) to the global
files system and uses this snapshot to restore the state. For parallel programs, the recovery involves
killing all the remaining processes when failure is detected. After the termination of processes, the
application is re-launched and state is restored from the restart file. To the date, there is a rich
literature on C/R in the context of HPC research [9, 11, 22, 25, 30, 33, 35], and successful im-
plementations are available for distributed memory systems [11, 25, 26, 31]. The most recent
work in C/R has demonstrated a significant performance improvement, exploiting the latent local-
ity properties of applications to reduce the overhead for accessing global file systems [25, 26, 31,
35].

Uncoordinated Checkpoint/Restart (UC/R) attempts to overcome the global synchronization
and rollback required for C/R. In UC/R, each process stores its own local checkpoint without any
synchronization between the processes. In the recovery phase, the recovering process starts with
the checkpoint for the lost process, allowing the other processes to have some opportunities to
continue the execution [12]. The recovering process, from the checkpoint, replays the messages
to perform a local rollback. In order to exercise such a rollback correctly, UC/R protocol needs
to identify a set of messages and the corresponding state of the remote processes. This complex
protocol may trigger a rollback of some remote processes to obtain the correct state consistent with
the messages to the recovering process. In the worst case, these rollbacks trigger other rollbacks
for the other remote processes, cascading them in a domino effect to bring the program back to the
beginning of the execution. Some recent work avoids such catastrophic situations using several
techniques such as message logging and exploiting the send-determinism of MPI programs [15,
32].

MPI_Comm_revoke | Communicator Revocation. All subsequent MPI calls
returns with error until the communicator is fixed by
MPI_Comm_shrink.

MPI_Comm_shrink | Communicator Fix. All failed processes are excluded in the
new communicator. New MPI ranks are assigned to all the
remaining processes, shifted by the failed ranks.

MPI Comm_agree | Resilient global agreement with the expense of relatively
high overhead compared to the regular collective calls. This
call works with the revoked MPI communicator.

Table 1. A partial list of interfaces available in MPI-ULFM

In the current MPI-3.0 standard, the global termination for any process/node failures has made
C/R the preferred method for resilience. There are a few MPI implementations to eliminate the
need for global termination for recovery [2, 13, 14, 37], but none of them has been integrated
into the MPI standard. Recently, the Fault Tolerance Work Group of the MPI Forum proposed

13

User Level Fault Mitigation (ULFM) [4, 5] to integrate resilience capabilities into the MPI-4.0
standard. ULFM provides the following capabilities: (1) continuing program execution through
process failure, (2) process failure detection and notification, (3) communicator revocation and
(4) communicator correction. Interestingly, ULFM does not have any special functions to restore
failed processes, leaving users to design their own recovery scheme with the set of APIs listed
in Table 1. Despite such low-level API support, there have already been a few use cases of re-
silient parallel dense matrix algorithms [24], Monte Carlo method [28] and sparse grid based PDE
solvers [1] that can continue computation through process failures.

14

Local Failure Local Recovery (LFLR)

Local Failure Local Recovery (LFLR) coined by Heroux [17] is a resilient programming model
to overcome the disproportional recovery for single node failures practiced by C/R. LFLR permits
a local recovery for a local failure to keep the remaining processes alive during the recovery. The
local recovery operation is not limited to a single process execution, allowing some assistance by
the remaining processes. This loose restriction permits several design options for implementing
LFLR.

Checkpoint/Restart

Po | Run | Kill | Restart| Run |
2 Run | Kl | Restart | Run |

P, | Run | Kill | Restart | Run |

~AL .
P | Run S crash < Kill | Restart | Run |
2NN

LFLR

Po Run |
Py | Run |
P | Run |

Run |
P | Standby | Join

Figure 1. Execution Model of LFLR

In this project, we adapt the LFLR model to the existing MPI SPMD model as illustrated in
Figure 1; we employ the idea of spare process reserve in order to keep the number of computing
processes constant after the recovery. This eliminates the need for load balancing and maintaining
the correctness of an application with fewer processes. To enable this programming model, we
identify several requirements listed below.

1. Runtime and middleware that permits parallel program execution to continue under process
failures.

2. Runtime and middleware that can provide replacement processes for the failed ones, in order
to mitigate complications by running a program with fewer processes. For the process re-

15

placement, they allow application programs to proquery the status of all the processes (alive

or lost).

3. Redundant persistent storage for restoring the data associated with failed processes.

4. Tools and framework to build application specific recovery schemes. This provides flexible
options for re-constituting the lost local state of a given application.

In the following sections, we discuss our implementation for each of the requirements.

PDE Solver

Scientific Data

Base class for
Application data

Parity in memory

Communication
and Spare Process

MPI-ULFM

[Application Program]

4. Application Recovery Layer (ARL)

3. Redundant Storage (RS)

2. Resilient Communicator (RC)

1. Parallel Execution Runtime (PER)

Figure 2. Architecture of LFLR Framework. The annotation on
the left is the use case described in this report.

LFLR Framework

Based on the requirements discussed in the previous section, we design a software frame-
work to enable the LFLR model for large scale parallel applications, as illustrated in Figure 2; the
numbers (1-4) in the components correspond to the numbers associated with the requirement list
above. Our framework, template-based object-oriented C++ code, provides a seamless integration
of all four requirements through abstraction of the individual requirements. The labels on the left
of Figure 2 indicate our implementation choice for each layer to demonstrate how the existing
technologies can be assembled to build an LFLR model. Note that it is possible to apply other

16

technologies to individual layers, depending on application characteristics and system configura-
tions. Our demonstration is intended in part to indicate where innovation in system design can
benefit application resilience, in the spirit of co-design approaches.

Parallel Execution Runtime (PER)

Parallel Execution Runtime is the first layer of the LFLR framework to manage the execution of
parallel programs. For the current implementation, we employ an MPI-ULFM prototype to support
the message passing and basic resilience capability. In the LFLR framework, PER does not provide
any APIs to application developers, but it interacts with middleware and the batch scheduler for
the given HPC system. One of the major functionality of PER is job launch. Although the MPI
standard defines APIs such as MPI_comm_spawn for dynamic process spawning during runtime,
many MPI implementation do not support this capability due to the constraint of the underlying
middleware and operating system of compute nodes. Instead of relying on such system specific
functionality, we leave the user to take responsibility of allocating extra processes (spare process
reserve) at job launch. Note that this is also dependent on the batch scheduler because some
schedulers may terminate the job allocation when any process failure is notified.

Resilient Communicator (RC)

At runtime, RC manages a number of parallel execution contexts by separating processes into
groups, each of which serves for application execution, application data redundancy and process
recovery respectively. This requires several MPI communicators including global MPI communi-
cator (MPI_COMM_WORLD) and sub-communicators as illustrated in Figure 3. In this figure, all mes-
sage passing calls for the existing application use Compute_Comm. The other sub-communicators
are used for the purpose of recovery, such as commit in Redundant Storage.

For message passing, RC provides two functionalities: (1) direct access to all the MPI com-
municators to allow MPI calls directly from an application program and (2) wrapper functions to
perform basic message passing calls including one-to-one send/receive and collectives. The design
of the wrapper functions is similar to those in BLACS [10], which supports different message pass-
ing software and parallel computing runtime other than MPI. One possible use of these wrapper
functions is to provide extra message passing capabilities not supported by MPI-ULFM. For exam-
ple, the failure detection and notification of MPT_Allreduce is not clearly defined in MPI-ULFM,;
we have observed that the current MPI-ULFM prototype notifies all remaining process about a
failure in some cases, but it is not compliant with the definition. We address this vague definition
of the collectives by providing input parameters for the function calls to select the notification ca-
pability. This feature allows users to design and tune resilient algorithms and applications in fine
granularity.

17

MPI_COMM_WORLD

Spare_Processes_Comm

G "—~\

4
[
\

~—

Comp_Group Comp_Group Comp_Group
Comm Comm Comm

_ J J)

Figure 3. Splitting of MPT_Comm by Resilient Communicator: the
circles with dashed line indicate the spare processes.

18

Compute processes split into groups Active spare processes

0000
CO0O

Restore
Q . Q e
Figure 4. Commit and Restore using dedicated Parity.
Redundant Storage (RS)

The Redundant Storage (RS) layer provides a temporary space outside local processes so that
the spare processes can retrieve the data of a failed process. In traditional C/R implementations,
the storage for checkpoint involves file I/O to retrieve application data for the restarting program.
Instead, our framework leverages the user-space memory to minimize the performance impact of
applications while providing data persistence unaffected by process failures. To meet this goal, we
employ the ideas from diskless checkpointing [29, 30] in which the spare processes accommodate
a space for data redundancy combined with local checkpointing. These spare processes, controlled
by RC, dedicate their memory space to keep the parity of individual data structures distributed
across the processes. The storage cost per spare process never exceeds any of the computing
processes in the associated process group. The parity operations are implemented with MPT_Reduce
using binary XOR operation as illustrated in Figure 4. In the RS component, we provide APIs for
commit and restore to recover a specified memory region using a spare process associated with
the process group defined by Group_Comm in Figure 3.

Application Recovery Layer (ARL)

The Application Recovery Layer (ARL) bridges between data structures (Vector, Matrix and
Mesh), RS and RC, bringing these elements together to implement application specific recovery.

19

Linear System Solver

[Vector \

I Another Matrix

Matrix Assembly Assembly
/ CSR_Matrix > CSR_Matrix < (CSR_Matrix
Mesh Creation
Mesh > Mesh < > Mesh < Mesh

NS S —4

L

Figure 5. Progress of the stack in LFLR_registry for a typical
PDE-based application.

This design enables to add a recovery mechanism to the existing scientific data structures and
classes as seen in the software frameworks such as Trilinos [18]. ARL has two capabilities to en-
able application-specific recovery: (1) abstract class to allow users to implement a recovery scheme
specific to individual data structure and (2) registry class to monitor the status of every recoverable
data objects. An abstract class, recoverable, permits users to design data-structure specific re-
covery scheme using several method calls for accessing the RS. For each data class, recoverable
encapsulates the commit and recovery schemes in its class functions, commit and restore, re-
spectively. The object monitor class, LFLR registry, maintains a stack of pointers to allocated
data objects as illusted by Figure 5. When initializing a recoverable object, the constructor of the
object pushes its address to LFLR_registry. When the object is released, the destructor pops the
stack to unregister. During recovery, LFLR_registry calls the restore method for each allocated
object from the bottom of the stack.

20

Application Recovery using the LFLR framework

In the current LFLR framework, MPI-ULFM is responsible for failure detection and notifica-
tion to trigger application recovery. For detection, MPI-ULFM returns an error flag when receiv-
ing messages from a failed process. Failure notification can be implemented using APIs such as
MPI_Comm_revoke and MPI_Comm_agree. In our use case described in Section , we have found
MPI _Comm_agree suitable for iterative linear system solvers to stop iterations across all the pro-
cesses in the same iteration.

When making a recovery, our LFLR framework restores three entities of an application: pro-
cess, data and state. The following subsections describe how our framework handles them, respec-
tively.

Process Recovery

For process recovery, the application code invokes RC to make a recover call to correct its
internal MPI communicators. The correction begins with MPI_Comm_shrink for the global com-
municator (copied from MPI_COMM_WORLD). Then, a spare process takes over a lost process through
rank reordering by MPI_Group_incl and MPI_Comm_create. After this correction, Compute_Comm
is created from the new global communicator. The other communicators make a correction if
necessary.

Data Recovery

After all MPI communicators are updated, a new process joining from the spare reserve needs
to recover the data and state of the application. The LFLR_registry object in ARL then iterates its
own stack of pointers for the allocated objects from the bottom. This bottom-up ordering ensures
the recovery of the seminal data objects prior to the recovery of the objects dependent on these.
For distributed data structures, the recovery involves restore calls to recover the local data as
indicated by Figure 4. For non-distributed data structures such as application parameters, the
recovery schemes can be implemented without RS.

One example for the effective data recovery using ARL is taking advantage of the dependency
of application data structure. As shown in Figure 6, PDE-based applications exhibits dependencies
between sparse matrix and mesh (and application parameters). In such applications, sparse ma-
trices are created through matrix assembly operation from mesh, tensor and the other application
specific parameters, and the cost of matrix generation is typically insignificant compared to the to-
tal application execution time. Therefore, it is worthwhile to regenerate sparse matrices instead of
storing them for data redundancy. We implemented a matrix regeneration routine for MiniFE from
the Mantevo mini application suite [16] and integrated into recoverable: : restore method for
CSRMatrix. The implementation for the regeneration involves a code reuse of the matrix assembly
routines with a small modification in order to keep the information associated with the mesh stored

21

in the remote processes; this is essential to make the recovery localized, although this requirement
could be removed in the future by permitting the recovering process to access the persistent storage
of neighboring processes. The performance measured on TLCC?2 PC cluster indicates a significant
reduction in the redundant storage requirement and the execution time for commit. The reduction
in the exception time for commit can amortize the increase in the execution time of restore be-
cause commit is called far more frequently than restore under the MTBF we expect in the future
extreme scale systems.

Redundant Storeage of MinIFE: 2,048 Processes
10000 100

- D

PN

10

1000

/ CSR_Matrix

T

100 -

0.1

10

Data Size per Process in MB

0.01

0.001)
(Mesh)

Execution Time for Commit/restore

512 1024 1536 2048
Global Mesh Size (X=Y=2)

[Data Size :Store All [l Data Size: Regenrate Matrix
=#=Commit/Restore: Store All =#=Restore: Regenrate Matrix

== Commit: Regenerate Matrix

Figure 6. Effective saving in the redundant storage requirement.
Y-axis on the left indicate the data size of two different matrix data
restoration schemes presented by the bar chart. Y-axis on the right
indicates the execution time of commit and restore operations for
these two restoration schemes.

Application State Recovery

For application-based C/R [25, 26, 29, 30], users need to design a way to locate the most recent
successful checkpoint of a given application code so that it can restart with an appropriate roll-
back. In our approach, the spare processes keep abreast of the application state by executing a
“skeletonized” code of the application, by which we mean that the spare processes participate in
the program logic execution, but have no portion of the distributed data. In the application program
source, these spare processes execute the same program of the compute process, but skip the real
computation except initialization of data objects that requires binding to LFLR registery. Figure
7 presents a source code modification to enable LFLR. This involves some coding effort for the
users to write extra if statements, but it can be mitigated by writing pre-built classes for basic
scientific data and compute kernel functions. Many robustly implemented applications already

22

contain logic that handle this situation, since partitioning of data may naturally result in a process
have no portion of the distributed data.

ﬂnpute(comm,data){ \ @npute(rcomm, registry, data, flg) {\
CSR_Matrix A(comm); CSR_Matrix A(rcomm,®istry);

registry.commit();

for... { for... {
ector x(comm); Vector x(rcomm,®istry);
registry.commit();
/I Do real computation if(flag == true) {

/I Do real computation

}
if(failed) {
rcomm.recover,

registry.recover;

if(l am joining from spare) {
flag = true;

}

}

} } I/ x is unregistered

\ / \ /I Check failure here
} 1 /

Figure 7. Code modification to enable LFLR. A spare process has
flg=false to skip the real computation. Once it joins the comput-
ing processes, f£1g is changed to t rue to perform real computation
for the lost process.

23

24

Use Case: Resilient MiniFE

We present a use case of LFLR framework with MiniFE from the Mantevo mini-application
collection [19]. Mini-FE is a parallel finite element analysis code for thermal PDEs on 3D regular
mesh written in C++. The code includes three major functions (1) mesh generation, (2) construc-
tion of sparse linear systems and (3) single linear system solution using Conjugate Gradient (CG)
iterations. In real PDE applications, a number of linear systems are solved to understand non-
linear or time-dependent behavior of physical systems. Exploring a single linear system solution
is, therefore, oversimplified in order to understand the behavior of such applications from the re-
siliency perspective. For this reason, we modify the source code to emulate a time dependent PDE
solver, which iterates a number of linear system solutions with a right hand side updated by the
solution of the previous linear system as shown in Algorithm 2. The sparse matrix data is kept
constant during the time stepping. The source of MiniFE is template based C++ code to describe
all data classes and methods, making it straightforward to integrate with our LFLR framework.

The process failure is emulated by a kill system call on a randomly chosen process at any
matrix or vector operations in the linear system solution. In the solver code of MiniFE, a failure
is detected by MPI_Wait for non-blocking receive at sparse matrix vector multiplication (SpMV)
and MPI Allreduce in vector dot product. For failure notification, MPI_comm_agree is called at
the end of the iteration to terminate the solver as indicated by Table 1.

The current implementation of Resilient Communicator (RC) does not support the recovery for
multiple process failure in the same time. Since typical scientific applications assign multiple MPI
processes (2-64) in a single node, a node loss means simultaneous multiple process failures and
it is essential for the LFLR framework to handle this type of failures. The new implementation
for RC is under development, and the performance study for single node failures or simultaneous
multiple process failures will be presented in the future report.

Algorithm 1 Conjugate Gradient with Process Failure Detection
Input:A, b and initial guess xg
ro :=b—Axg, x :=Xxg, po:="ro, 1 :=0
while ||| is small enough or Failure do
q := Ap; (Error Detection)
a = ||ri||?/(p! q) (Error Detection)
X =x+Up;
Fiy1 =1 — 0g;
Frew = ||7i11]|> (Error Detection)
B = raew/|I7il?
Piv1 = Tiy1+ Bpi
i=i+1
if (MPI_comm_agree returns 1) then
break
end if
end while

25

Algorithm 2 Resilient Time Step MiniFE

Create Mesh Q

Commit

Create Matrix A from Q

Create Initial xp from Q

Commit

while i = 1 until the last time step do
Commit
Create b; from x;_;
Solve Ax; = b; (process failure may occur here)
if Process failure is detected then

Recover,i:=i—1

end if

end while

Performance of Resilient MiniFE

The performance testing is conducted on Sandia’s TLCC2 cluster that comprises 1,272 nodes
(19,712 cores). Each compute node has dual sockets of 2.6Ghz 8-core Intel Sandybrdige-EP CPUs
with 64 Gbyte 1,600MHz DDR3 RAM. The interconnect is 4xQDR QLogic Infiniband in Fat-Tree
topology. For MPI-ULFM, we applied a modification to the source of latest commit (b24c2e4)
to apply tree-based resilient collectives [21] primarily for communicator creation calls used in
MPI _Comm_create and MPI_Comm_shrink. The original code uses one-to-all and all-to-one algo-
rithms, which exhibits a poor scalability for large number of processes. The performance improve-
ment with the tree-based code is shown in Table 2; we have observed that the original code is
not able to finish in 30 minutes with 2,048 processes. All source code (including MPI-ULFM) has
been compiled with GNU-4.7.2 compilers. The performance of the code was measured up to 2,048
processes (cores).

512 procs | 1,024 procs 2,048 procs
Original 5.65 sec 16.53 sec | 30 min+ (hang?)
Tree-based | 3.31 sec 3.86 sec 11.07 sec

Table 2. Performance of Communicator Fix: the cost of
MPI_Comm_shrink and a couple of MPI_Comm_Create calls.

26

of processes Mean Max Min | STD
4 17.838 | 18.144 | 17.594 | 0.209
8 54.863 5.721 | 54.2529 | 0.482
16 61.971 | 62.670 | 60.643 | 0.501
32 67.111 | 68.741 | 66.015 | 0.799
64 164.63 | 168.788 | 159.655 | 2.271
128 177.341 | 180.811 | 171.071 | 2.858
256 197.751 | 203.748 | 192.395 | 3.673
512 474.86 | 489.364 | 467.447 | 4.606
1024 522.618 | 619.962 | 496.447 | 31.34
2048 567.106 | 645.92 | 542.20 | 37.70

Table 3. Execution Time of the LFLR enabled Time-Stepping
MiniFE in seconds. STD stands for standard deviation.

of processes | Mean Max Min STD
4 0.789 | 0.826 | 0.714 | 0.0183
8 2.624 | 2.889 | 2.524| 0.119
16 2909 | 3.071 | 2.533 | 0.0941
32 3.174 | 3.403 | 2.774 | 0.131
64 7.965 | 9981 | 6952 | 0.319
128 8.451 | 9.253 | 7.582 | 0.348
256 9484 | 11.874 | 8.538 | 0.558
512 23.051 | 31.436 | 20.083 | 1.776
1024 25.032 | 41.772 | 21.229 | 2.861
2048 26.579 | 43.465 | 22.092 | 3.376

Table 4. Execution Time of single linear system solution in the
LFLR enabled Time-Stepping MiniFE (in seconds). STD stands
for standard deviation.

27

of processes | Mean Max Min STD
4 0.0068 | 0.0077 | 0.0058 6.21E-4
8 0.0073 | 0.0083 | 0.0062 5.54E-4
16 0.0079 | 0.0085 | 0.0073 | 3.427E-4
32 0.0092 | 0.0101 | 0.0085 | 4.047E-4
64 0.0136 | 0.0144 | 0.0127 | 3.6902E-4
128 1.123 | 2.176 | 0.0183 0.947
256 1.511 | 3.424 | 0.0242 1.182
512 4.049 | 6.555| 1.955 1.24
1024 6.55 | 10.712 | 4.257 1.376
2048 12.178 | 13.991 | 9.237 1.504

Table 5. Execution time of process recovery in the LFLR enabled
Time-Stepping MiniFE (in seconds). STD stands for standard de-
viation.

of processes | Mean Max Min STD
4 0.0509 | 0.0517 | 0.0503 | 4.259E-4
8 0.0939 | 1.1068 | 0.0888 0.0058
16 0.1774 | 0.205 | 0.149 0.0209
32 0.387 | 0.667 | 0.114 0.236
64 0.842 | 1.277 | 0.333 0.331
128 0.758 | 0.942 | 0.540 0.127
256 0.944 | 2.463 | 0.443 0.496
512 1.382 | 2.723 | 0.484 0.706
1024 2223 | 4.046 | 0.712 1.079
2048 2341 | 4.876 | 0477 1.811

Table 6. Execution Time of the initial commit and the 20 com-
mit operations during time stepping in the LFLR enabled Time-
Stepping MiniFE (in seconds). STD stands for standard deviation.

28

of processes | Mean Max Min STD
4 0.293 | 0.299 | 0.2893 | 0.0031
8 0.338 | 0.402 | 0.315 | 0.0277
16 0402 | 0.472 | 0.332 | 0.0532
32 0.439 | 0.549 | 0.369 | 0.0705
64 0.548 | 0.624 | 0.463 | 0.0362
128 1.028 | 1.481 | 0.892 | 0.145
256 1.258 | 1.6128 | 0.951 | 0.153
512 1.389 | 1.5854 | 1.0823 | 0.132
1024 1.957 | 3314 | 0.945 | 0.506
2048 2.658 | 3.483 | 1.922 | 0.591

Table 7. Execution Time of the data recovery operation for single
process failures in the LFLR enabled Time-Stepping MiniFE (in
seconds). STD stands for standard deviation.

of processes | Mean Max Min STD
4 0.928 | 0.929 | 0.928 | 4.0525E-4
8 0.893 | 0.903 | 0.886 0.0053
16 1.047 | 1.148 | 0.987 0.0405
32 1.07 1.28 0.92 0.0541
64 1.0904 | 1.052 | 0.806 0.0763
128 1.679 | 1.734 | 1.615 0.0637
256 2497 | 2753 | 2.327 0.0666
512 9.003 | 13.123 | 7.239 1.111
1024 13.595 | 18.809 | 11.939 1.654
2048 17.195 | 22.769 | 15.585 1.89

Table 8. Execution Time of all the failure notification operations
by MPI_Comm_agree (in seconds). MPI_Comm_agree is called every
CG iteration within the linear system solver call. STD stands for
standard deviation.

29

Performance of Resilient MiniFE
1000

L

100

10

1

0.1

0.01

Execution Time in Seconds

0.001 ¢
0.0001

0.00001
0 256 512 768 1024 1280 1536 1792 2048

of Cores

=&=All Solve+Failure Recovery ==All Solve without Recovery

Communicator Fix Commit (20 times)
=>*=Data Recovery Error Detection
=® Error Notification Extra linear system solve

Figure 8. Execution Time of Resilient MiniFE including all
recovery cost. The cost for A1l solve + recovery and All
solve without recovery are hard to distinguish in the logarith-
mic scale.

We study the weak scalability of the resilient MiniFE from 64 x 64 x 64 grid (262K in matrix
size) for 4 processes to 512 x 512 x 512 grid (134M in matrix size) for 2,048 processes. The data
size per process is approximately 23 Mbytes. A process group size is set to 128. The recovery
involves process replacement (communicator fix), data recovery and repeating the same linear
system solution.

The execution time of MiniFE and its recovery overhead are presented in Figure 8, indicating
a small effect in the overall performance by process failure. Details from a set of 30 runs are
shown in Figures 3 — 8 and indicate a significant variation in performance execution times. We
believe these are a result of the inherent variability widely observed on the Chama system, but
insight into exact causes is future work for our project. The cost for commit shows a moderate
increase for small process counts, but the growth after 128 processes is rather slow due to the
grouping. The data recovery cost is very negligible as it is executed within a single process group
and leave the other group to start roll-back recovery immediately. The cost of communicator
fix is more expensive than the other recovery operations. Despite the performance improvement
of the resilient agreement algorithm in MPI_Comm_shrink and MPI_Comm_create, the execution
time grows almost linearly as indicated by Figure 9. We further investigate the performance of

30

every single resilient agreement performed in the communicator fix routine. Interestingly, a large
fluctuation is observed in the execution time as shown in Figure 10. In particular, the first two calls
(in MPI_Comm_Shrink) spend a significant amount of time compared to the subsequent agreement
calls. We conjecture that MPI-ULFM has some problems in the network setup for managing a new
communication pattern incurred by a process loss.

Recovery Cost: Resilient MiniFE
20

18 Commit (20 times)
Data Recovery

16 Communicator Fix
14 =® Error Notification

==Recovery All

12

10

Execution Time in Seconds
(o]

0 512 1024 1536 2048
of Cores

Figure 9. Execution Time of Individual Recovery Components
in Resilient MiniFE.

31

2.00E+00

1.50E+00

1.00E+00

5.00E-01

0.00E+00

Execution Time of Global Agreement Calls

1 2 3 4 5 6 7 8 9 10 11

MPI_Comm_shrink MPI_Comm_create and MPI_Comm_split

Figure 10. Execution Time of Individual Global Agreement Calls
(tree-based) in Communicator Fix on 1,024 cores. The numbers in
X-axis indicate the calling sequence. Many of the calls spend as
small as 0.001 seconds.

32

12

Discussions

In this report we described the LFLR framework and its performance with MinIFE mini-
application code. Despite the the scalable performance demonstrated in the previous section, there
are several issues to be examined to further improve the performance and feasibility of our ap-
proach at scale. In this section, we discuss some of these issues with the current implementation
and provide future research and development directions.

Asynchronous Process Rank Arrangement

In MPI-ULFM, the MPI communicator (MPI_Comm) is the primary data structure enabling users
to obtain the status of processes through MPI_Comm_agree as well as all message passing function-
alities. When a process failure happens, the process manager layer of MPI-ULFM updates the
process status either manually or automatically. Unfortunately, the current MPI-ULFM and MPI
restrict MPI_Comm modification calls to be blocking. In the LFLR framework, there is no reason
to wait for the recovery of individual MPI communicators in Redundant Communicator (RC) to
complete spare process arrangements, because the messages of individual MPI communicators
in RC do not conflict with each other. Therefore, it is possible to perform the recovery of local
application data during the recovery of MPI_Comm. We strongly recommend that future MPI imple-
mentations, or equivalent runtime/middleware, should support non-blocking versions of process
rank arrangement to enable application recovery with the minimal synchronization cost.

Resilient Collectives and Their Applications

Our performance study indicates some issues in the resilient collectives of MPI-ULFM, which
are used for the correction of MPI_Comm and failure notification/detection. These collectives are
designed to continue the operation with lost processes and distribute the status of the processes
among the remaining processes. The status returned by these calls can vary depending on the ap-
plication needs. The current version of MPI-ULFM only provides a few types of resilient collective
implementations as indicated by the poor performance in Table 2. In addition to the performance
improvement, we plan to investigate different types of resilient collective implementations to sup-
port a wide range of application needs, from the maintenance of MPI communicators to different
degrees of failure notification to enable flexible resilient algorithm design.

One possible solution is exploring resilient global agreement protocols for large number of
processes. Recently, implementations of resilient global agreement protocol have been studied
for the fault tolerant version of MPI [7, 21]. These ideas combined with the ideas of overlay
network [36] further improves the resilience capability of the runtime.

Another solution is to extend the Resilient Communicator in (RC) of the LFLR framework to
assign some complementary functionalities of MPI-ULFM to the active spare processes. In the
current design, every process group (indicated by Group_Comm) contains a single spare process to

33

handle 128-256 processes, and these spare processes can contribute to collect the process informa-
tion with some data replications to speed up the global agreement protocol.

In addition to the efforts from the application layers, it is possible for the HPC system and
middleware vendors to provide APIs for application developers to query the process status. How-
ever, there are a couple of drawbacks in this approach; portability and performance implications.
The former is less serious because this can be encapsulated by RC of the LFLR framework. The
latter would incur performance degradation of the applications, including a small application pro-
gram that does not need any resilience enhancement. We recommend that system and middleware
designers support options for users to enable/disable this capability at runtime.

Recovery Semantics

In the ULFM framework, we demonstrated a simple rollback recovery. This will fit the major-
ity of the execution patterns of ASC application codes. However, rollback would incur unnecessary
recompilation for the recovery. Methods like Uncoordinated Checkpoint/Restart (UC/R) are de-
signed to avoid such a rollback [15, 32] without any code modification. However, these approaches
require (1) a very complex protocol to compute the amount of rollback for individual processes, (2)
infrastructure support such as persistent storage and spare processes and (3) good understanding
in the communication pattern of applications to reduce the recovery overhead. In particular, the
UC/R protocol by Guermouche et. al. [15] indicates that some message exchanges are required
to compute the rollback, and 50% of the processes makes a rollback in their empirical studies on
NAS parallel benchmark. Furthermore, UC/R has a similar infrastructure requirement as LFLR,
indicating the challenges of designing UC/R software.

On the other hand, the LFLR framework provides more options than rollback recovery . The
application-oriented nature allows a variety of resilient programming model such as selective re-
liability and skeptical programming as suggested by Heroux [17]. We will extend the APIs for
ARL such as LFLR registry and recoverable class to seek application (algorithm) based fault
tolerance more aggressively. One example is APIs similar to exception handler as proposed in
the GVR project by Chien et al [8, 38]. These APIs allow application developers to implement
the recovery scheme specific to the context of application, enabling more flexible algorithm-based
fault tolerance (ABFT). These APIs will facilitate implementing the parallel version of resilient
iterative solvers [6, 34] for sparse linear systems.

Recovery from Catastrophic Failures

The current design of the LFLR framework can handle only a single process failure at each
process group, as indicated in the previous section on the use case with MiniFE. In reality, multiple
process and node failures may happen within a very short time due to a loss of power supply to
blade or kernel panic on a single node. The LFLR framework, in particular RC and RS, needs
to handle these situations through more sophisticated physical process assignment for each group

34

as suggested by Sato et al [36] and employ the idea of multi-dimensional parity (checksum) to
assign more spare process to a virtual process mesh. In addition to the sole effort for the LFLR
framework, it is possible to exited LFLR APIs to access future I/O capability and the system
specific resilience/redundancy capabilities.

Usability of LFLR

Integrating LFLR into large scale applications will require some effort. In particular, for ap-
plications that assume every process will have a non-trivial portion of the distributed data, source
code skeletonization for spare processes may involve a huge code modification. Code transforma-
tion tools could be used to enable the LFLR capability, using the ideas by Hukerikar et. al. for
protecting a program from silent data corruption in shared memory programming [20] .

35

36

Conclusions

In this paper we described a software framework to enable the LFLR resilience model for
SPMD programming model using MPI-ULFM, a fault tolerant MPI proposed for the future MPI
standard. Our framework allows users to extend MPI programs in order to harden their resilience
from single process failures, eliminating the resilience need for checkpoint/restart (C/R) and global
files systems. The use of hot spare processes combined with disk-less checkpointing permits scal-
able recovery and relaxes the complications for running applications with fewer processes. Our
preliminary results indicate that a scalable recovery for application data and state is achievable,
though there are some performance issues in MPI-ULFM, in particular, the resilient collectives for
the communicator modification routines. The current implementation of MPI-ULFM is still a pro-
totype; the performance is the secondary interest at this moment. Performance improvements in
future releases would resolve this problem and make LFLR a method of choice over the state-of-art
C/R for extreme scale systems.

Based on our study, we identified future research directions and issues in the current HPC
runtime and systems. There are some drawbacks in the current MPI-UFLM implementation and
its API design for communicator modification and creation. For performance, a lack of efficient
resilient collectives would prevent us from developing a resilient application at scale. The lack of
asynchronous communicator modification calls prevents more localized” recovery. Systems or
middleware may provide some supplemental support to improve the resilient collectives, but this
entails potential performance implications. For these reasons, the LFLR framework should expand
its capability for ease of use, coverage of failures and the flexibility of the recovery semantics.

37

38

[1]

[2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

References

Md Mishin Ali et al. “Application Level Fault Recovery: Using Fault-Tolerant Open MPI in
a PDE Solver”. In: Proceedings of the 27th IEEE International Symposium on Parallel and
Distributed Processing Workshops and PhD Forum (IPDPSW’14), PDSEC 2014. Phoenix,
Arizona, USA, 2014.

R.T. Aulwes et al. “Architecture of LA-MPI, a network-fault-tolerant MPI”. In: Proceedings
of 18th International Parallel and Distributed Processing Symposium. 2004, pp. 15—.

Keren Bergman et al. ExaScale Computing Study: Technology Challenges in Achieving Ex-
ascale Systems Peter Kogge, Editor & Study Lead. Tech. rep. Defence Advanced Research
Projects Agency Information Processing Technology Office (DARPA IPTO), 2008.

W. Bland et al. “An Evaluation of User-Level Failure Mitigation Support in MPI”. In: Pro-
ceedings of Recent Advances in Message Passing Interface — 19th European MPI Users’
Group Meeting, EuroMPI 2012. Vienna, Austria: Springer, 2012.

Wesley Bland et al. “Post-failure recovery of MPI communication capability: Design and
rationale”. In: International Journal of Highe Performance Computing Applications 27.3
(2013), pp. 244-254.

P. Bridges et al. Fault-tolerant linear solvers via selective reliability. 2012. URL: http:
//arxiv.org/abs/1206.1390.

D. Buntinas. “Scalable Distributed Consensus to Support MPI Fault Tolerance”. In: Par-
allel Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International. 2012,
pp- 1240-1249.

Andrew Chien and The GVR team. How Applications use GVR: Use Cases. Tech. rep. TR-
2014-06. Department of Computer Science, Univercity of Chicago, 2014.

J. T. Daly. “A higher order estimate of the optimum checkpoint interval for restart dumps”.
In: Future Gener. Comput. Syst. 22.3 (Feb. 2006), pp. 303-312.

Jack J. Dongarra and R. Clint Whaley. A User’s Guide to the BLACS v1.1. Tech. rep. 94.
LAPACK Working Note, 1997.

J. Duell, P. Hargorive, and E. Roman. The Design and Implementation of Berkeley Lab’s
Linux Checkpoint/Restart. Tech. rep. LBNL-54941. Lawrence Berkeley National Labora-
tory, 2002.

E. N. (Mootaz) Elnozahy et al. “A Survey of Rollback-recovery Protocols in Message-
passing Systems”. In: ACM Comput. Surv. 34.3 (Sept. 2002), pp. 375-408. 1SSN: 0360-0300.

Graham E. Fagg and Jack J. Dongarra. “Building and Using a Fault-Tolerant MPI Imple-
mentation”. In: Int. J. High Perform. Comput. Appl. 18.3 (Aug. 2004), pp. 353-361.

D. Fiala et al. “Detection and correction of silent data corruption for large-scale high-
performance computing”. In: High Performance Computing, Networking, Storage and Anal-
ysis (SC), 2012 International Conference for. 2012, pp. 1-12.

39

[15]

[16]
[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

A. Guermouche et al. “Uncoordinated Checkpointing Without Domino Effect for Send-
Deterministic MPI Applications”. In: Parallel Distributed Processing Symposium (IPDPS),
2011 IEEE International. 2011, pp. 989—1000.

M. A. Heroux. The Mantevo Project Homepage. 2014. URL: http://mantevo.org.

M. A. Heroux. Toward Resilient Algorithms and Applications. 2014. URL: http://arxiv.
org/abs/1402.38009.

Michael A. Heroux et al. “An Overview of the Trilinos Project”. In: ACM Trans. Math.
Softw. 31.3 (Sept. 2005), pp. 397-423.

Michael A. Heroux et al. Improving Performance via Mini-applications. Tech. rep. SAND2009-
5574. Sandia National Laboratories, 2009.

Saurabh Hukerikar, Pedro C. Diniz, and Robert F. Lucas. “A programming model for re-
silience in extreme scale computing”. In: FTXS-12, Dependable Systems and Networks
Workshops (DSN-W), 2012 IEEE/IFIP 42nd International Conference on. 2012, pp. 1-6.

Joshua Hursey et al. “A Log-scaling Fault Tolerant Agreement Algorithm for a Fault Tol-
erant MPI”. In: Proceedings of the 18th European MPI Users’ Group Conference on Re-
cent Advances in the Message Passing Interface. EuroMPI’ 11. Santorini, Greece: Springer-
Verlag, 2011, pp. 255-263.

K. Li, J.F. Naughton, and J.S. Plank. “Low-latency, concurrent checkpointing for parallel
programs”. In: Parallel and Distributed Systems, IEEE Transactions on 5.8 (1994), pp. 874—
879.

Ning Liu et al. “On the role of burst buffers in leadership-class storage systems”. In: Mass
Storage Systems and Technologies (MSST), 2012 IEEE 28th Symposium on. 2012, pp. 1-11.

Piotr Luszczek et al. FT-LA. URL: http://icl.cs.utk.edu/ft-1la/software/index.
html.

A. Moody et al. “Design, Modeling, and Evaluation of a Scalable Multi-level Checkpointing
System”. In: High Performance Computing, Networking, Storage and Analysis (SC), 2010
International Conference for. 2010, pp. 1-11.

Adam Moody and Kathryn Mohror. Scalable Checkpoint Restart. URL: http://sourceforge.
net/projects/scalablecr/.

MPI 3.0 document. 2012. URL: http://www.mpi-forum.org/docs/docs.html.

S. Pauli, M. Kohler, and P. Arbenz. A fault tolerant implementation of multi-level Monte
Carlo methods. Tech. rep. 793e. Institute of Theoretical Computer Science, ETH Ziirich,
2013.

J. S. Plank, Y. Kim, and J. Dongarra. “Algorithm-Based Diskless Checkpointing for Fault
Tolerant Matrix Operations”. In: 25th International Symposium on Fault-Tolerant Comput-
ing. Pasadena, CA, 1995, pp. 351-360.

J. S. Plank, K. Li, and M. A. Puening. “Diskless Checkpointing”. In: IEEE Transactions on
Parallel and Distributed Systems 9.10 (1998), pp. 972-986.

40

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Raghunath Rajachandrasekar et al. “A 1 PB/s file system to checkpoint three million MPI
tasks”. In: Proceedings of the 22nd international symposium on High-performance parallel
and distributed computing. HPDC ’13. New York, New York, USA: ACM, 2013, pp. 143—
154.

R. Riesen et al. “Alleviating scalability issues of checkpointing protocols”. In: High Perfor-
mance Computing, Networking, Storage and Analysis (SC), 2012 International Conference
Jor. 2012, pp. 1-11.

E. Roman. E.A Survey of Checkpoint/Restart Implementations. Tech. rep. LBNL-54942.
Lawrence Berkeley National Laboratory, 2002.

Piyush Sao and Richard Vuduc. “Self-stabilizing Iterative Solvers”. In: Proceedings of the
Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems. ScalA ’13.
Denver, Colorado: ACM, 2013, 4:1-4:8.

Kento Sato et al. “Design and Modeling of a Non-blocking Checkpointing System”. In:
Proceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis. SC *12. Salt Lake City, Utah: IEEE Computer Society Press, 2012,
19:1-19:10.

Kento Sato et al. “FMI: Fault Tolerant Messaging Interface for Fast and Transparent Re-
covery”. In: 28th IEEE International Parallel & Distributed Processing Symposium (IPDPS
2014). May 2014.

Guang Suo et al. “NR-MPI: A Non-stop and Fault Resilient MPI”. In: Parallel and Dis-
tributed Systems (ICPADS), 2013 International Conference on. 2013, pp. 190-199.

Ziming Zheng, Andrew A. Chien, and Keita Teranishi. “Fault Tolerance in an Inner-Outer
Solver: a GVR-enabled Case Study”. In: VECPAR 2014. LNCS. Springer-Verlag, 2014, to
appear.

41

DISTRIBUTION:

1 Nathan A. DeBardeleben
PO Box 1663, MS F606
Los Alamos, NM 87545

1 MS 1316 Steve J. Plimpton, 01444
1 MS 1319 Kurt Brain Ferreira, 01423
1 MS 0899 Technical Library, 9536 (electronic copy)

42

v1.38

@ Sandia National Laboratories

